
Page 1 of 6

Problem 8: CacheSim (30 points) [File Upload]

By August Ning

Design a cache simulator in C and integrate a fully associative victim cache into the cache hierarchy. This
question is long! Please read the question in its entirety!



Page 2 of 6

Part 1: To begin, start with creating a cache simulator that will simulate a level 1 cache.

for the first part, you will write a C program called cachesim which will take in 4 inputs from the
commandline:

./cachesim <file.trace> <cache_capacity_bytes> <assoc> <cache_line_bytes>

• file.trace - a trace file of loads and stores instructions, more details to follow

• cache capacity bytes - the total capacity of the cache in bytes

• assoc - the associativity of the cache

• cache line bytes - the size of each cache line in bytes

cachesim should simulate the cache’s behavior of the given configuration, reporting if a load or store is a
hit or miss for the cache.

cachesim Details: The cache should be write back, write allocate cache using a LRU replacement
policy for evicted cache lines. cachesim should also keep track of memory. Memory address will range
between 0x000000 and 0xFFFFFF. The memory space is byte addressed and big-endian. Caches will be no
larger than 1 MB (1048576 bytes), associativity will be no larger than 32, block sizes will range 8 bytes to
256 bytes. A cache with associativity=1 is a direct mapped cache. The cache capacity, associativity, and
cache line size will be a power of 2.

Loads and stores will be either 1, 2, 4, or 8 bytes. No memory accesses will go across multiple cache lines,
and no memory accesses will be larger than the configured cache line size.

You do not need to do any error checking on the inputs and the trace file. You can assume that the trace
file is properly formatted, the input configuration is a valid cache configuration.

To begin, the memory is all zeros and all cache line entries are invalid.

The implementation of the cachesim is up to you. However, it will be beneficial to understand cache
fundamentals on how caches are broken down in cache lines, sets depending on associativity, how caches
are tagged, and eviction policies.



Page 3 of 6

Trace File: The trace files will be a plaintext file with each operation on its own line

STORE 0x0 0x4 aabbccdd

STORE 0x4 0x4 11223344

STORE 0x1000 0x2 baad

STORE 0x2002 0x2 beef

LOAD 0x0 0x2

LOAD 0x2000 0x4

Each line will start with either LOAD or STORE, followed by the hex value of the memory address, then the
hex value of the number of bytes to read/write.

For store instructions, there will be an additional value with the hex value to be stored. The stored value
will not have a leading “0x”. The stored value will be properly sized to match the number of bytes
specified.

Memory addresses and stored values will not have leading zeros. All instructions will be valid for the cache
configuration. All tokens will be separated by whitespace.

cachesim Output: cachesim should print the results of each instruction onto the console. For each
instruction, print the instruction and memory address and if it’s a HIT or MISS within the cache.

If it’s a load instruction, also print the value of data loaded in hex with leading “0x”. Always print out
the number of bytes specified by the load instruction and include leading zeros.



Page 4 of 6

Example Output

./cachesim demo.trace 4096 1 64

STORE 0x0 MISS

STORE 0x4 HIT

STORE 0x1000 MISS

STORE 0x2002 MISS

LOAD 0x0 MISS 0xaabb

LOAD 0x2000 MISS 0x0000beef

./cachesim demo.trace 4096 2 64

STORE 0x0 MISS

STORE 0x4 HIT

STORE 0x1000 MISS

STORE 0x2002 MISS

LOAD 0x0 MISS 0xaabb

LOAD 0x2000 HIT 0x0000beef



Page 5 of 6

Part 2: In the next part, modify cachesim to add a victim cache. The victim cache has the following
behavior:

• A victim cache is a fully associative cache between the cache (L1) and memory.

• Whenever any L1 cache line is evicted, it is first placed in the victim cache.

• If there is a miss in the L1 cache, the system will search the victim cache.

• If there’s a hit in the victim cache, the victim cache will swap into the L1 cache.

• When there is a miss in the L1 and victim cache, the data will be provided from memory directly
into the L1.

The L1 and victim cache will still follow LRU replacement policy when evicting from L1 into the victim
cache, promoting swapping from the victim cache into the L1 cache, and evicting from the victim cache
into memory.

When an L1 cache line is evicted into the victim cache, the LRU counts are not reset. When an L1 cache
line is evicted and the victim cache is full, evict the LRU from the victim cache.

The victim cache has the same cache line size as the L1. The victim cache starts empty and the victim
cache lines are invalid. A a fully associative cache, the victim cache will only evict to memory when it
becomes full and a new cache line needs to be placed in the victim cache.

Modify your cachesim to add in a victim cache. The victim cache will take an additional command line
argument for the victim cache size. If an instruction has a hit in the victim cache, print VICTIM HIT.

./cachesim_victim <file.trace> <cache_capacity_bytes> <assoc> \

<cache_line_bytes> <victim_cache_size>

• victim cache size: the number of cache lines that the victim cache will hold



Page 6 of 6

Example Output

./cachesim_victim demo.trace 4096 2 64 2

STORE 0x0 MISS

STORE 0x4 HIT

STORE 0x1000 MISS

STORE 0x2002 MISS

LOAD 0x0 VICTIM HIT 0xaabb

LOAD 0x2000 HIT 0x0000beef

How To Submit: How to Submit

For both cachesim and cachesim victim submit your code as a single C file titled
cachesim <team id>.c and cachesim victim <team id>.c. Compile both of these files into a single .zip
file following the contest naming convention.

Your code will be compiled with gcc cachesim {victim} <team number>.c on the Adroit clusters (Adroit
runs Springdale Linux 8.8 and has gcc 8.5.0).

Your simulators’ print output will be compared to the solution’s output.


