
Page 1 of 4

Problem 4: March Sadness (20 points)

By Sacheth Sathyanarayanan

Princeton University’s men’s basketball team made it to the Sweet 16 Round of March Madness 2023 but
lost the match that would have qualified them to the Elite Eight. Alice is a sports analyst who was hired
by the Basketball coach to see what went wrong. Alice reasons that Princeton could have selected a better
team from its pool of basketball players and decides to develop a framework to think through selecting
the “best” team.

Part (a) — How consistent is he? (3 points) [Codeforces]

Consistency is a very important measure of how good a basketball player is. Alice creates the following
experiment to compute a suitable proxy for consistency: she picks a player and has them attempt to shoot
a basketball a total of n times. If the player makes the shot, she writes down 1 and if they do not make
the shot, she writes down 0. Thus, after the player makes n shots, she constructs a bit string of length n.
She gives you this bitstring and asks you to compute the maximum number of consecutive 1s. This serves
as an estimate for consistency.

Input: The first line contains a positive integer n < 108. The next line contains a bitstring of length n.

Output: The output should be the maximum number of consecutive ones.

Example:

Input:

14

11011111100011



Page 2 of 4

Output:

6

Explanation: The values of all positions between 3 and 8 (inclusive) are all 1 and this is maximum.

Part (b) — What if things were different? (5 points) [Email Submission]

As you work on this problem, you notice that changing a 0 to a 1 or a 1 to a 0 has the potential to
significantly change the maximum number of consecutive 1s. In order to further test this hypothesis, you
decide to make your implementation robust to bit flips. To be more specific, you need to design three
functions: init(n, s), bit-flip(x) and num-max().

The function init(n, s) is like a constructor: it takes in n, the number of shots the player takes and s,
the bitstring of length n corresponding to the hits / misses of the player and returns nothing. You can
use init(n, s) to initialize your data structures. The function bit-flip(x) takes as argument a position
x (assume that 0 ≤ x ≤ n− 1) and flips the value in the bitstring at position x. The function num-max()
computes and returns the maximum number of consecutive 1s.

You are guaranteed that init will be called first. After this, bit-flip and num-max could be called in
any order any number of times. For full credit, you need init to run in O(n) time and both bit-flip

and num-max to run in O(log n) time per call. You are required to write up a complete description of each
of these three functions and provide a brief justification of both correctness and the time bound.

Note: A naive solution would be to have bit-flip(x) just change the value of the bitstring and num-max()
do the same thing as it did in part (a). This takes O(1) time per call of bit-flip(x) but O(n) time per
call of num-max(). For full credit, your implementation needs to take O(log n) time per call to bit-flip(x)
and num-max().



Page 3 of 4

Part (c) — Which player should I select? (12 points) [Email Submission]

Now assume that Alice has done her analysis (with the help of your code!) on a total of n players
p0, p1, . . . , pn−1. Armed with the insights from parts (a) and (b), she assigns a consistency score ci, which
is a positive real number, to each player pi that corresponds to how consistent they are (a higher score
implies a higher consistency). She knows, however, that picking a team is not just about maximizing
consistency — team dynamics are also very crucial. To gather insights on team dynamics, she decides to
survey each player, giving them a choice to select at most one best friend. For a player pi, their best friend
is defined as a player pj such that j > i and pi refuses to be a part of the team unless pj is a part of the
team. Note that a player need not have a best friend; for instance, it is impossible for pn−1 to have a best
friend (since there is no index greater than n− 1). To reiterate, if Alice decides to have a player pi on the
team, then she must also have pj, who is p′is best friend, on the team. Note that this constraint proceeds
recursively; thus, she must also include p′js best friend on the team and so on.

Your task is to design these four functions: init(n, c, b), min-consistency(i), update-consistency(i, x)
and update-best-friend(i, j). The function init(n, c, b), as in the previous case, functions like a con-
structor. It takes as input n, the number of players; c, an array of size n where the ith component c[i] is
the consistency score of player pi and b, an array of size n where the ith component b[i] is the index of the
best friend of player pi. By convention, if player pi does not have a best friend, b[i] = −1. Note that by
the constraints of the problem, if b[i] ̸= −1, then b[i] > i. You can use the init function to initialize your
data structures.

The function min-consistency(i) takes an integer i between 0 and n− 1 (inclusive) as input and returns
the minimum consistency score of a player that Alice must include on the team as a (potentially indirect)
consequence of including player pi on the team. The function update-consistency(i, x) updates the
consistency score ci of player pi to a positive real number x. The function update-best-friend(i, j)
updates the best friend of player pi to be pj.

We guarantee that the function init is called once at the beginning. After that, any of the three functions
min-consistency, update-consistency and update-best-friend can be called in any order in any
number of times. Your task is to ensure that the init function runs in O(n) time and to minimize the
amortized cost per call to min-cost, update-consistency and update-best-friend. For any significant
credit, all of these functions must run in o(n) amortized cost.



Page 4 of 4

How to Submit

Email submissions to part (b) and (c) separately to coscon.submit@gmail.com. If you must resubmit,
respond to the thread where you sent your original submission; we cannot guarantee that your resubmission
will be graded otherwise.

Part (a)
Submit your code on Codeforces.

Part (b)
Write the description of your functions as well an analysis of correctness. Don’t forget to prove your time
bound! Write this in a file called Problem4bSubmission and add it as an attachment.

Part (c)
Write the description of your functions as well an analysis of correctness. Don’t forget to prove your time
bound! Write this in a file called Problem4cSubmission and add it as an attachment.

mailto:coscon.submit@gmail.com

