
A Gentle Intro to Python
Nalin Ranjan | September 24, 2021

● Download the materials (slides, interactive notebook) from
https://bit.ly/3EPzAcN. LET US KNOW IF YOU CAN’T ASAP

● Login to Google Colab (colab.research.google.com) and upload the
intro_to_python.ipynb notebook. You should see the following:

● Join the Sli.do:

https://bit.ly/3EPzAcN

History of Python

One of the easiest programming languages to learn

Why Python?

#include <stdio.h>

int main() {
 char name[20];

 printf(“Enter your name: \n”);
 scanf(“%[^\n]%*c”, &name);

 printf(“Your name is %s\n”,
name);

 return 0;
}

name = input(“Enter your name: ”)
print(“Your name is”, name)

A lot of useful features already built-in for you

Why Python?

● Basic Data Structures
● No Low-Level Concerns (e.g. memory management)

● Rich variety of already-built libraries you can use!

Why Python? It’s used everywhere!

Web DevelopmentMachine Learning Scientific Research

How Jupyter Notebook Works

● Write code in the cells with grey background:

● Click the play button or Shift + Enter to run your code

● Talk to you, aka print things

Simplest thing you can ask a program to do?

● In Python, this is done through the print function

● Syntax:

Notice each print statement
begins on a new line

Separate arguments with
commas

You’re ready to write your first Python programs!

● Navigate to section 1.1 of the notebook and complete the two
exercises (Hello World and Staircase)

● If you’re done early, feel free to peruse section 1.2

● Tip: Remember that print statements start new lines by default.
Can you use this when printing out the staircase?

Variables

● Often want to store data that we will later change, even if its
meaning or function remains the same.

Dear Google,

My name is Nalin and I’m a freshman at Princeton. I saw the Google software
engineer intern posting on Handshake and think I would be an excellent fit. I
believe that my past project experience, coupled with my love for problem
solving and programmatic experimentation, uniquely prepares
me for this role. I would love to experience first-hand the
cutting-edge things Google software engineers do!

Don’t lie: we all do it
Dear Google,

My name is Nalin and I’m a freshman at Princeton. I saw the Google software engineer intern posting on
Handshake and think I would be an excellent fit. I believe that my past project experience, coupled with my love for
problem solving and programmatic experimentation, uniquely prepares me for this role. I would love to experience
first-hand the cutting-edge things Google software engineers do!

Dear Microsoft,

My name is Nalin and I’m a freshman at Princeton. I saw the Microsoft data scientist intern posting on
Handshake and think I would be an excellent fit. I believe that my past project experience, coupled with my
love for problem solving and programmatic experimentation, uniquely prepares me
for this role. I would love to experience first-hand the cutting-edge things Microsoft
data scientists do!

Variables

● Imagine writing a Python program that prints my cover letter

● I might want to assign variables so I only have to change the
company name and role in one place:

Numeric Variables in Python

● Integers and Decimals: 0, 3, 4.5, 2.718281828459045, -33, 1000.6

● Can perform arithmetic operations:
- Add: a + b - Subtract: a — b - Multiply: a * b
- Float Division (returns a decimal): a / b
- Integer Division (returns an integer): a // b (return the quotient
rounded down to nearest integer)
- Modulo: a % b (remainder when a divided by b)
- Exponentiation: a ** b (a raised to b)

Numeric Variables in Python (cont.)

● We can also compare them

- Is a less than b: a < b

- Analogously for <=, >=, >, ==, !=

Equal to

Not equal to

● Don’t forget the order of operations when doing arithmetic!

- Parentheses, Exponents, Multiplication/Division/Modulo, Addition/Sub

Strings in Python

● A sequence of characters (words, codes, etc.)

'r2d2' "Princeton ACM" "%&@!@#!@%" '19238'

● Wrapped in double quotes or single quotes

● Basic String Operations:

Concatenate: 'r2d2' + 'c3p0' --> 'r2d2c3p0'
Count characters: len('r2d2') --> 4
Get kth character: 'r2d2'[2] --> 'd'

Very Important:
Counting starts at 0

More Advanced String Operations

● Slicing: calculate subsequences of a string

Start at first index, go up
till BUT NOT INCLUDING
last index

● Formatting: “substituting values into a formula string”

● find(): finding smaller strings inside larger ones

Which index in banana does the
pattern ‘na’ first appear at, if at all?

Booleans

● Either take on the value True or False

False

True

● (expression 1) and (expression 2): True only if both True

● (expression 1) or (expression 2): True if either is True

● not (expression): flip the value of expression
not True --> False, etc.

Mixing Types

● Be careful when working with variables of different types!

● Solution: casting

str(20) --> '20' int('-20') --> -20

● But be careful when casting!

int('fish') bool(576)

Check your progress

● Go to the notebook and do sections 2.1-2.3. If you’re done early,
you can browse section 2.4

● Hint for the Tom Cruise one in 2.2: You’re probably going to need
all the string operations we discussed!

Giving computers free will

● Your thought process for deciding whether to come tonight:

If there’s Tacoria → I’m coming! No Tacoria → Meh

● Python uses if/elif/else statements for conditional logic
If boolean_condition is
True, do task 1

other_boolean_condition only checked
if boolean_condition was False

If all if/elif blocks failed, do task 3

Why loops?

● Often want to make programs do a lot of repetitive stuff

● We don’t want to write 100 lines of repetitive code!

For loops in Python

● Iterate over all elements of a sequence (more on sequences later)

index of iteration sequence of integers from 0 to 99

What we are doing every
iteration of the loop

● Net effect is to print our message for every integer
from 0 to 99

While loops in Python

● Keep on doing something until some condition becomes false

Add a random number
between 0 and 1 to x

As long as x < 1 is true, keep
executing the body of the loop

● Be careful with while loops! What’s wrong with

Notice the indentation!

● Indentation matters!

The body of a loop or if statement is indented
with respect to the header

Check your progress

● Complete sections 3.1 and 3.3 of the notebook. If you’re done
early, you can catch a glimpse of how (disgustingly) simple Python
syntax can be in section 3.2

● Let any of us know if you have questions!

Sequences in Python

● Containers of ordered data

Strings: containers of individual characters

Tuple: comma-separated sequence of items

(1, 2, 3, 4) ('Nalin', 2022) ('A', True)

Tuples are denoted
with parentheses

List: also comma-separated sequence of items!

[1, 2, 3, 4] ['Nalin', 2022] ['A', True]

● Tuple/List difference? Lists are mutable, tuples aren’t

Sequence operations (should look familiar!)

● Access an arbitrary element:

[1, 2, 3][2] = 3 'r2d2'[-1] = '2' (2, True)[0] = 2

● Retrieve a slice of the sequence:

[1, 2, 3, 4][1:3] = [2, 3] 'r2d2<3c3p0'[2:-3] = 'd2<c3'

(2, True, 'r2d2')[0:2] = (2, True)

Negative indices start
at the back

● Concatenate:
[1, 2] + [3, ‘pi’] = [1, 2, 3, 'pi']

More on Slicing

● Can also slice with an increment:

[1, 2, 3, 4, 5, 6, 7, 8][1:5:2] = [2, 4]

Start at index 1
End at (but don’t include) index 5

Go in increments of 2

● If the increment is negative, the slicing goes backward:

[1, 2, 3, 4, 5, 6, 7, 8][5:1:-2] = [6, 4]

Start at index 5
End at (but don’t include) index 1

Go backward in
increments of 2

More on Slicing

● If start index omitted, Python starts at the beginning if increment is
positive and end if increment is negative

[1, 2, 3, 4, 5, 6, 7, 8][:6:2] = [1, 3, 5]

Start at beginning
End at (but don’t include) index 6

Go up in increments of 2

[1, 2, 3, 4, 5, 6, 7, 8][:1:-2] = [8, 6, 4]

Start at end
End at (but don’t include) index 1

Go backward in
increments of 2

More on Slicing

● If end index omitted, Python keeps going until there are no more
elements

[1, 2, 3, 4, 5, 6, 7, 8][1::2] = [2, 4, 6, 8]

Start at index 1
Go until out of bounds

Go up in increments of 2

[1, 2, 3, 4, 5, 6, 7, 8][::-2] = [8, 6, 4, 2]

Start at end Go backward in
increments of 2 Go until out of bounds

Iterating through Sequences

● Use a for loop and the in keyword:

range(4, 9)
≈ (4, 5, 6, 7, 8)

More on lists

● List Comprehension: An easy way to create lists

● Lists have many useful built-in functions! (see notebook for more)

Check your progress

● Complete sections 4.1 and 4.2 in the notebook

● Stand up and stretch, get water, get Tacoria, etc.

Sets in Python

● Often, we want elements in a container to be unique

● Example: Free Ubereats gift cards at a finance tech talk
- Don’t want to give the person who clicks ‘sign-up’ 10 times 10 gift cards!

Some more set operations

● Initialize a non-empty set from list:

● Union of sets: put all of the elements in either into one big set

● Intersection of sets: find the set of elements that are in both sets

Dictionaries in Python

● Dictionaries are just sets where each element has a value

● Like an actual dictionary!

key/element
(must be unique)

value associated with key (doesn’t have to be unique)

● Dictionary lookup is very fast!

Dictionary Example

.keys() function returns all
the keys in the dictionary

Dictionary Keys don’t have to be
strings! Can be tuples, numbers,
or any other immutable data type

Sets and Dictionaries are iterable too

Check your progress

● Complete section 4.3 of the Jupyter Notebook

● Ask us questions, socialize with your neighbor, etc. We’re almost
done!

Functions in Python

● Why? Don’t want repetitive bits of code we’re going to reuse

● Anatomy of a function:

All functions start with def

Name of the function

Inputs to the function

Body of the Function
(its implementation)

What the function outputs

● A block of code that runs when it is called

Functions Example

Functions inside of functions

● Calling functions inside of functions is allowed!

Effect: We say hello and then
output their reversed name

● You can even call the function itself inside of a function! This is
called recursion

Recursion Example: Factorial

Crucial to have this
base case! Why?

Check your progress

● Complete sections 5.1 and 5.2 of the Jupyter Notebook. If you’re
done early, check out section 5.3

That’s it! Some last thoughts:

● Use the rich set of resources Python has to offer! Google and
StackOverflow will become your best friend

● If you’re doing a pretty simple task and find yourself writing a lot of
code, there’s probably a better way in Python — again, Google!

● If you’re a COS major, don’t let Python be the only language you
know. Python simplifies a lot of stuff you should know about

Use us as resources!

● Ask questions now!
● Email us at ptonacm@princeton.edu with any questions!
● We’ll post the slides and notebooks (including a solution

notebook) on the website for you to review

● If you’re interested, check out sections 6 and 7! We’ll stick around
to answer any questions

mailto:ptonacm@princeton.edu

