
Mock Interviews @ ACM

Solution Card

Snowed In

Problem Statement

Snow has blanketed Princeton’s campus, and the paths that connect Princeton’s buildings to
one another have been blocked off by multiple feet of the powdery material. To optimally
schedule the shoveling of snow, it is necessary to send someone to check the condition of
each path on campus. However, this is time-consuming, so we want to start by clearing off
the critical paths. A path is critical if its removal will cause any building to be unable to be
reached from any other building. Princeton’s buildings have been numbered 0 to n - 1: given
pairs (a_i, b_i) representing the undirected paths between them, return all critical paths that
should be cleared off immediately.

Sources: https://leetcode.com/problems/critical-connections-in-a-network/,
https://nthomas.org/2020-05-16-critical-connections-leetcode/

Hints

Hint 1: How can we best represent this problem in a data structure, and how may we traverse it
efficiently to check the critical paths condition? (graph with adjacency list and dfs)

Hint 2: What is the relationship between the critical path condition and concepts like cycles or
connected components? How can this problem be redescribed using those terms, and can we do any
precomputation to allow us to more efficiently check for the critical path condition? (answer: yes,
compute strongly connected components! See solution for why)

Solution

The key insight here is that we’re looking for the bridge between strongly connected components.
Luckily this is a solved problem, and Tarjan’s algorithm will come to the rescue. Let’s come up with a
quick definition of a strongly connected component that works for us. A strongly connected
component can be thought of as a graph in which no one edge is the weak link in the graph. Or, all
edges have at least one backup to keep the graph tied together if it disappears.

1

https://leetcode.com/problems/critical-connections-in-a-network/
https://nthomas.org/2020-05-16-critical-connections-leetcode/

If we take a set of nodes and number them in the order we visit them (like a timestamp, or just a
monotonically increasing id), we can end up building an array of IDs. Let’s call that the dfsNumber
array, is for any node in the order we visited it in a depth first search.

Additionally, we want to know how far “backwards” into a graph a node can reach. If we know nothing
about a node, the “oldest” seen node that node N can see is itself. Once we start to look at neighbor
nodes, we can assert that the oldest node a neighbor can reach is the oldest node any of its
neighbors can reach (ignoring the direct parent we came from). We can hold oldestReachable in an
array, where oldestReachable[i] indicates the oldest timestamp reachable from node i:

int timestamp = 0;

void tarjan(int node, int &parent, vector<vector<int>> &adjacency, vector<int>

&dfsNumber, vector<int> &dfsLow, vector<pair<int,int>> &criticalEdges) {

timestamp++;

dfsNumber[node] = timestamp;

dfsLow[node] = timestamp;

for (auto neighbor : adjacency[node]) {

if (neighbor === parent) continue;

if (dfsNumber[neighbor] == 0) tarjan(neighbor, node, adjacency, dfsNumber,

dfsLow, criticalEdges);

// resetting oldestReachable if neighbor can cycle back

dfsLow[node] = min(dfsLow[node], dfsLow[neighbor]);

// if neighbor cannot reach back to me or oldest, we have a critical edge

if (dfsLow[neighbor] > dfsNumber[node]) edges.push_back({node, neighbor});

}

}

vector<pair<int,int>> &criticalConnections(vector<pair<int,int>> connections) {

int n = connections.size();

vector<vector<int>> adjacency(n, vector<int>());

for (auto &p : connections) {

adjacency[p.first].push_back(p.second);

adjacency[p.second].push_back(p.first);

}

vector<int> dfsNumber(n,0);

// this is what we called oldestReachable

// the lowest number reachable by dfs from a node

vector<int> dfsLow(n,0);

vector<pair<int,int>> criticalEdges;

2

tarjan(0, -1, adjacency, dfsNumber, dfsLow, criticalEdges);

return criticalEdges;

}

Analysis

Time: O(|V|+|E|)

Space: O(|E|)

Tips and tricks

● Often with graphs it is useful to consider the relationship between the current problem and
famous algorithms like Djikstra, Bellman-Ford, Floyd-Warshall, Ford-Fulkerson, so it may be
useful to be familiar with such algorithms, especially when harder interviews are anticipated.

● A useful strategy may be to ask the question — how can we reformulate this problem in graph
theory terms, e.g. using cycles, components, colorings, flow, etc? This generalizes to graph
problems in general.

Follow-ups

● How might we do this if the critical elements were vertices and not edges? (e.g. buildings
were blocked off, instead of roads) Solution: see
https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/

● Can we solve this without Tarjan’s algorithm, or view the problem in an alternative way?
Possible solution: see
https://leetcode.com/problems/critical-connections-in-a-network/discuss/382638/DFS-detailed
-explanation-O(orEor)-solution

3

https://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/
https://leetcode.com/problems/critical-connections-in-a-network/discuss/382638/DFS-detailed-explanation-O(orEor)-solution
https://leetcode.com/problems/critical-connections-in-a-network/discuss/382638/DFS-detailed-explanation-O(orEor)-solution

